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A Self-Adjusting Method
for Real-Time Calculation
of Thermal Loads in
HVAC-R Applications
A significant step in the design of heating, ventilating, air conditioning, and refrigeration
(HVAC-R) systems is to calculate room thermal loads. The heating/cooling loads encoun-
tered by the room often vary dynamically while the common practice in HVAC-R engi-
neering is to calculate the loads for peak conditions and then select the refrigeration
system accordingly. In this study, a self-adjusting method is proposed for real-time calcu-
lation of thermal loads. The method is based on the heat balance method (HBM) and a
data-driven approach is followed. Live temperature measurements and a gradient
descent optimization technique are incorporated in the model to adjust the calculations
for higher accuracy. Using experimental results, it is shown that the proposed method
can estimate the thermal loads with higher accuracy compared to using sheer physical
properties of the room in the heat balance calculations, as is often done in design proc-
esses. Using the adjusted real-time load estimations in new and existing applications, the
system performance can be optimized to provide thermal comfort while consuming less
overall energy. [DOI: 10.1115/1.4031018]

Keywords: HVAC-R, thermal loads, real-time calculation, self-adjusting method, heat
balance method

1 Introduction

A significant portion of the worldwide energy is consumed by
HVAC-R systems. The energy consumption by HVAC-R systems
is 50% of the total energy usage in buildings and 20% of the total
national energy usage in European and American countries [1].
HVAC-R energy consumption can exceed 50% of the total energy
usage of a building in tropical climates [2]. Furthermore, refriger-
ation systems also consume a substantial amount of energy.
Supermarket refrigeration systems, as an example, can account for
up to 80% of the total energy consumption in the supermarket [3].

Vehicle fuel consumption is also significantly affected by air
conditioning. The HVAC-R energy usage in a typical vehicle
outweighs the energy loss to rolling resistance, aerodynamic drag,
and driveline losses. HVAC-R systems can reduce the fuel econ-
omy of midsized vehicles by more than 20% while increasing
NOx and CO emissions by approximately 80% and 70%, respec-
tively [4]. Moreover, HVAC-R is a critical system for hybrid
electric vehicles and electric vehicles, as it is the second most
energy consuming system after the electric motor [5]. The energy
required to provide cabin cooling for thermal comfort can reduce
the range of plug-in electric vehicles by up to 50% depending on
outside weather conditions [4]. Less energy consumption by
mobile HVAC-R systems directly results in higher mileage and
better overall efficiency on the road.

Proper design and efficient operation of any HVAC-R system
require: (i) accurate calculation of thermal loads and (ii) appropri-
ate design and selection of the HVAC-R system. The common
practice among HVAC-R engineers is to begin by estimating the
room thermal loads. This step consists of a careful study of the

room characteristics such as wall properties, fenestration, open-
ings, and air distribution. The room usage pattern, occupancy
level, geographical location, and ambient weather conditions are
other necessary data that need to be thoroughly investigated
before a decision is made on the design cooling/heating load. An
HVAC-R system that can handle the calculated load is then
selected. As such, much detailed information is required in order
to properly calculate the thermal loads and select the system.
Innovative methods that can accurately calculate instantaneous
thermal loads without requiring a hefty amount of details can be
promising in the design of new HVAC-R systems.

On–off and modulation controllers are widely used in HVAC-R
systems, which use the room temperature as the controlled vari-
able [6]. However, such controllers mostly act upon the current
temperature value and are not aware of the actual thermal load
and its variation pattern over the duty cycle. It is shown that intel-
ligent control of the HVAC-R operation based on thermal load
prediction can help maintain air quality while minimizing energy
consumption [7,8]. By predicting the thermal loads in real-time,
controllers are enabled to not only provide thermal comfort in the
current condition but also adjust the system operation to cope with
upcoming conditions in an efficient manner. Having real-time
estimation of thermal loads can result in improved energy effi-
ciency, as the HVAC-R system is enabled to adapt to various
demand situations. Arguello-Serrano and Velez-Reyes [9] stated
that availability of thermal load estimations efficiently allows the
HVAC-R controller to provide comfort regardless of the thermal
loads. Afram and Janabi-Sharifi [10] showed that improved load
estimations can lead to the design and testing of more advanced
controllers. Zhu et al. [11] studied an optimal control strategy for
minimizing the energy consumption using variable refrigerant
flow and variable air volume air conditioning systems. Qureshi
and Tassou [12] reviewed various methods of capacity control
in refrigeration systems and stated that using variable-speed
compressors can be the most energy-efficient method for capacity
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control. Therefore, the ability to accurately predict thermal loads
in real-time can improve the feedback information for the control
of HVAC-R systems, which in turn results in significant reduction
of total energy consumption and greenhouse gas emissions.

The literature is rich with various approaches proposed for
calculation of thermal loads. The American Society of Heating,
Refrigerating, and Air Conditioning Engineers (ASHRAE)
recognize some of them including the HBM [13]. HBM is a
straightforward and rigorous method that involves calculating a
surface-by-surface heat balance of the surrounding walls of the
room through consideration of conductive, convective, and radia-
tive heat transfer mechanisms. After calculation of heat flows
across all walls and openings, the heat balance equation is solved
for the room air to complete the solution procedure. The method
has been extensively used in residential, nonresidential, and
mobile applications [14–17].

HBM is known as a “forward” or “law-driven” approach, i.e.,
it estimates the loads based on rigorous details of the room.
Feedback data from the system are seldom incorporated in the
formulations of this method. In contrast to HBM, “inverse” or
“data-driven” methods study existing HVAC-R systems and allow
the thermal performance of the system to be inferred from
measured temperature values. Such approaches mathematically
evaluate the loads through learning and testing rather than analyz-
ing the heat transfer equations. Li et al. [18] presented four model-
ing techniques for hourly prediction of thermal loads. The
methods included back propagation neural network, radial basis
function neural network, general regression neural network, and
support vector machine. The mathematical models they used cor-
related the cooling load with parameters such as the ambient
weather, but the heat transfer equations were not explicitly used.
Kashiwagi and Tobi [19] also proposed a neural network algo-
rithm for prediction of thermal loads. Ben-Nakhi and Mahmoud
[20] used general regression neural networks and concluded that a
properly designed neural network is a powerful tool for optimiz-
ing thermal energy storage in buildings based only on external
temperature records. They claimed that their set of algorithms
could learn over time and improve the prediction ability. Sousa
et al. [21] developed a fuzzy controller to be incorporated as a pre-
dictor in a nonlinear model-based predictive controller. Yao et al.
[22] used a case study to show that a combined forecasting model
based on a combination of neural networks and a few other
methods can be promising for predicting a building’s hourly load
for the future hours. Solmaz et al. [23] used the same concept of
neural networks to predict the hourly cooling load for vehicle cab-
ins. Fayazbakhsh et al. [24] proposed a simple method that can
estimate the total heat gain and thermal inertia of the room using
an inverse calculation method and real-time temperature
measurements.

Although producing acceptable results, methods that are purely
based on artificial intelligence are inherently unaware of the heat
transfer mechanisms. Thus, they might prove unreliable in new

scenarios and conditions for which they are not trained. A number
of recent studies aim at combining artificial intelligence algo-
rithms with conventional load calculation methods to improve
them. For instance, Wang and Xu [25,26] used genetic algorithm
to estimate thermal parameters of a building thermal network
model using the operation data collected from site monitoring.
They combined a resistance–capacitance (RC) model of the build-
ing envelope with a data-driven approach where their RC model
parameters were corrected via real-time measurements. The
results of conventional load calculation methods can be improved
by incorporating new mathematical algorithms that act on simple
real-time measurements.

Table 1 summarizes the above-mentioned studies proposing
novel methods for calculation of thermal loads for various appli-
cations. The disadvantage of some of these methods is their com-
plexity of implementation in typical HVAC-R applications. While
relying upon conventional design methods can cause remarkable
inaccuracies in thermal load estimations, incorporation of artificial
intelligence methods may require computational resources that
may not be available for typical systems. An accurate real-time
load calculation method that is also simple to implement can be
beneficial for practical engineering applications of HVAC-R
design.

In this study, the HBM is combined with a data-driven
approach to propose a new model for thermal load estimation.
The proposed method is based on the governing equations of heat
transfer while utilizing real-time measurements to improve the
estimation accuracy. A simple mathematical approach based on
gradient descent optimization is used to adjust the method’s coef-
ficients during a few training steps. The proposed method is
intended to be an intermediate solution for simple yet accurate
thermal load calculations. In comparison to the above-mentioned
studies, it is attempted that the current method be:

• based on fundamental heat transfer equations, therefore gen-
erally applicable to various problems, but requiring little
room information,

• data-driven, therefore automatically adjusted based on feed-
back temperatures, but requiring few sensors, and

• mathematically simple, therefore avoiding computational
intensity, but providing accurate load calculations.

A testbed is designed and built to simulate thermal loads in a
generic chamber. The modeling results are experimentally vali-
dated using the testbed. The approach can aid the design process
of new systems and also help retrofit existing systems. The main
advantage of the proposed method is that it can provide control-
lers with an estimation of the real-time thermal loads, while the
accuracy of the method is progressively improved by a mathemat-
ical self-adjusting algorithm. Moreover, the present model is rela-
tively simple and computationally inexpensive. Since the general
form of the HBM is used as the basis for the governing equations,
the proposed method is applicable to any HVAC-R system in

Table 1 Summary of studies proposing novel methods to calculate HVAC-R thermal loads for various applications

Authors Application Method

Khayyam et al. [7,8,17,37] Automotive Fuzzy predictive control
Barnaby et al. [14] Residential building HBM
Fayazbakhsh and Bahrami [15] Automotive HBM
Arici et al. [16] Automotive Analytical energy balance
Li et al. [18] Office building Support vector machine and artificial neural network
Kashiwagi and Tobi [19] Residential building Artificial neural network
Ben-Nakhi and Mahmoud [20] Office building General regression neural network
Yao et al. [22] Office building Analytic hierarchy process
Solmaz et al. [23] Automotive Artificial neural network
Sousa et al. [21] Generic Fuzzy predictive control
Fayazbakhsh et al. [24] Freezer room HBM
Wang and Xu [25,26] Office building Genetic algorithm
Zhai et al. [27–32] Building CFD
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general. As such, the same concept can be used for residential
buildings, office buildings, freezer rooms, and vehicle air condi-
tioning systems.

2 Model Development

The methodology of the HBM is followed to develop a real-
time thermal load calculation algorithm. As shown at the bottom
of Fig. 1, the room air is in thermal balance with internal sources,
ventilation load, and heat transfer across walls, as shown by the
following equation:

_QI ¼ _QV þ _QW (1)

where _QV is the heat loss due to ventilation and infiltration, _QW is
the total heat loss from the room to the ambient air across the
walls, and _QI is the heat gain from internal sources. In the absence
of a cooling system and when the steady-state condition is
reached, i.e., when all temperatures are relatively constant, the
room is in thermal balance and Eq. (1) formulates the zone air
heat transfer.

The calculation of _QW consists of three steps: (a) outside face
heat balance, (b) conduction through the wall, and (c) inside face
heat balance. The heat balances on the interior and exterior wall
faces occur through radiation and convection mechanisms. As
shown in Fig. 1, both longwave and shortwave radiations can
occur on the interior and exterior surfaces. Moreover, the radiation
can originate from transmitted solar rays or radiation exchange
with other zone surfaces. The bulk of the radiation energy
received at each surface contributes to the temperature increase at
that surface. Heat is then transferred to the inside or outside air
through the convection mechanism. Thus, the total wall heat
loss _QW in Eq. (1) consists of the total heat transfer across all

walls through all possible mechanisms of heat transfer including
radiation, conduction, and convection.

The convection and radiation mechanisms depend on various
factors such as wall orientation and shape as well as adjacent air
velocity and temperature. Finding the proper convective coeffi-
cient and linearized radiative coefficient requires correlations that
may not hold for all conditions, especially in vehicle applications.
As an instance of the importance of this issue, the studies by Zhai
et al. [27–32] are noteworthy. They developed an entire methodol-
ogy to couple computational fluid dynamics (CFD) simulations
with energy simulations to improve the accuracy of the latter
for various air distribution patterns and convective coefficients.
Of course, such methods are time consuming and computationally
intensive and may not be desirable options for many applications,
especially on board a vehicle. Thus, the calculation of the convec-
tive and radiative heat transfer rates intrinsically contains more
complexity compared to the conductive heat transfer which
follows the Fourier’s law of conduction [33].

The wall conduction is in series to the outside and inside face
heat balances, i.e., the same amount of heat transfer rate crossing
the outside face, conducts through the wall, and eventually passes
through the inside face. Having a real-time measurement of the
temperatures on both sides of a wall, i.e., having the actual To and
Ti at steady-state conditions enables us to calculate the total heat
transfer rate across the wall.

The total wall heat transfer rate is the summation of all individ-
ual wall heat transfer values

_QW ¼
Xn

j¼1

_QW;j (2)

where _QW;j is the heat transfer rate across wall j and n is the num-
ber of walls. According to Fourier’s law of conduction [33], the
heat transfer rate is linearly related to the temperature gradient

_QW;j ¼
kA

b

� �
j

Ti � Toð Þj (3)

where k is the conduction heat transfer coefficient, A is the wall
surface area, and b is the wall thickness. The underlying assump-
tions for using Eq. (3) are uniform temperature over the surface,
uniform wall thickness, and uniform thermal conductivity. In
practice, rarely any of these conditions are met. The wall of a
vehicle cabin or a residential room normally has different layers
of materials with various thicknesses and thermal properties. Fur-
thermore, much geometrical and thermal information are either
unavailable or inaccurate while analyzing or retrofitting the
HVAC-R performance of a room. An adjustment method is pro-
posed in the following text to automatically calculate and correct
the wall heat transfer coefficients.

Combining Eqs. (2) and (3), the total wall heat transfer rate is
written as

_QW ¼
Xn

j¼1

kA

b

� �
j

Ti � Toð Þj (4)

_QV is caused by the movement of air in or out of the zone and its
calculation is thus more complicated than the conductive heat
transfer mechanism. On the other hand, natural convection
and forced convection of air through openings and seams are
inevitable in many practical cases. Thus, we assume a constant
steady-state value to represent the ventilation heat transfer
rate. Replacing w0 ¼ _QV and w ¼ kA=b in Eqs. (1) and (4), we
arrive at

_QI ¼ _QV þ _QW ¼ w0 þ
Xn

j¼1

wj Ti � Toð Þj (5)

Fig. 1 Schematic of the HBM [13]. Each wall is represented by
a conductive resistance for steady-state conditions. Ti and To

represent the temperatures on the inside and outside surfaces
of the wall.
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where w0 – wn are called the weight factors. As previously
mentioned, there are always uncertainties and inaccuracies
associated with the calculation of the weight factors. Nevertheless,
considering Eq. (1) for steady-state conditions, if _QI and the tem-
peratures Ti and To are known for a few cases, a gradient descent
optimization technique can be utilized to adjust the weight factors
progressively and use the adjusted weights for future load calcula-
tions. This approach leads to a self-adjusting algorithm for the
real-time calculation of the wall heat transfer rates.

Equation (5) is a linear function in which w0 is called the “bias
weight” and w1 – wn are called the “input weights” [22,34–36]. In
order to establish a simple formula for updating the weight fac-
tors, a “transfer function” f can be applied to the right-hand side
of Eq. (5) to arrive at the following:

O ¼ f w0 þ
Xn

j¼1

wj Ti � Toð Þj

 !
(6)

where O is the calculated output and f is the sigmoid
function [36]

f xð Þ ¼ 1

1þ exp �xð Þ (7)

Finally, in order to adjust the weight factors w0 – wn, a training
process is required where _QI is known alongside the measured
temperatures Ti and To for a few cases. The correction procedure
is implemented according to [34]

wmþ1
j ¼ wm

j þ g D� Oð Þm Ti � Toð Þmj (8)

where g is the learning rate. D ¼ f _QI

� �
is the desired output found

from the known _QI values of the training phase and m denotes the
step number of the training algorithm. The set of weight factors
found by the training algorithm is eventually inserted in Eq. (5) to
arrive at the real-time thermal load for future cases where the
direct heat gain from internal sources is unknown. Note that the
original equation of heat balance in Eq. (1) is written for steady-
state conditions. As such, the training scheme of Eq. (8) is most
reliably applicable to temperature measurements at steady-state
conditions. In practice, once the steady-state condition is reached,
the temperatures are sensed at every time step, say every second,
and the training procedure is performed using those readings.
However, although the mentioned steps occur in time, they are
merely regarded as iteration steps for Eq. (8). Therefore, the over-
all algorithm must not be mistaken for a transient formulation.

In summary, the objective function of the discussed optimiza-
tion algorithm is F ¼ D� Oj j, which is the difference between
the real internal heat gain and the calculated internal heat gain.
Although the weight factors may mathematically converge to
negative values, it is necessary that they retain their physical
meaning, i.e., the wall thermal conductance values, which are
always positive. Thus, it is deemed to minimize the objective
function F subject to the constraints w0;w1;…;wn > 0. A signifi-
cant advantage of the proposed technique is that considerably lit-
tle information need to be known about the room in order to
calculate the thermal loads. The weight factors which are updated
in the training procedure can be initiated from any arbitrary value
such as zero.

Figure 2 summarizes the overall load calculation algorithm
including the training procedure. As shown in Fig. 2, the weight
factors are updated in the training procedure until their relative
variation is smaller than a selected convergence criterion e.
Once the weight factors have converged within the selected range
of error, they can be used to estimate _QV þ _QW in the future
conditions when _QI is unknown.

The model is deemed to be used for improved calculation of
thermal loads. It is based on the HBM, but the necessary

coefficients used in that method are adjusted by a gradient descent
optimization technique. Intelligent algorithms can be applied to
various design stages: (1) thermal load calculations, (2) refrigera-
tion system control, and (3) tuning controller parameters. Li et al.
[18] used several techniques based on neural networks in order to
calculate the thermal loads (stage 1). In such methods, the mathe-
matical formulations are not based on heat transfer formulae and
the algorithm attempts to correlate between the thermal load
and its affecting parameters unaware of the underlying governing
equations. Some studies by Khayyam et al. [7,8] used a law-
driven methods to calculate the loads in the first stage, but devel-
oped a novel controller based on a combination of neural network
and fuzzy controller in the next stage (stage 2). In another study,
Khayyam et al. [37] used a law-driven approach for thermal load
calculation alongside a proportional-integral-derivative (PID) con-
troller, but used neural networks to tune the PID gains and achieve
energy efficiency (stage 3). The approach pursued in this study
aims to utilize the HBM for thermal load calculations (stage 1),
while the gradient descent optimization technique is utilized to
improve the accuracy. The thermal load estimation data provided
by this method can aid conventional or intelligent controllers to
streamline the operation of the HVAC-R system.

3 Results and Discussion

To test and verify the proposed model, a custom-designed
testbed is built as shown in Fig. 3. The testbed is built out of
wooden, plastic, and glass materials and is adjustable for different
dimensions and angles to mimic the cabin of a sedan car. Six pairs
of T-type thermocouples (5SRTC-TT-T-30-36, Omega Engineer-
ing, Inc., Laval, QC, Canada) are attached on the chamber walls,
each pair connected to the two sides of a wall at the same spot.
The thermocouples have a tolerance of 61:0�C and are connected
to a data acquisition system (NI 9214DAQ, National Instruments
Canada, Vaudreuil-Dorion, QC, Canada) for collecting the tem-
perature values at a sampling rate of 1Hz. Regular tape was used
to attach the thermocouples, as shown in Fig. 3. Since the present

Fig. 2 Flowchart of the self-adjusting algorithm for real-time
calculation of thermal loads by automatic estimation of conduc-
tion coefficients
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model relies on automatic adjusting of the wall heat transfer coef-
ficients, no specific concern exists regarding the accurate location
and attachment method of the thermocouples. There are four
openings on the front and rear walls of the chamber which are all
blocked and the chamber is sealed in order to avoid air infiltration
and ventilation. However, a small amount of air infiltration may
still exist due to imperfect air sealing.

Table 2 shows the precise locations of the installed thermocou-
ples. The reference coordinates are shown in Fig. 3. Each pair
consists of two opposing thermocouples installed on the two
opposite sides of the corresponding wall in the chamber. Figure 4
shows a computer model of the chamber alongside its cross sec-
tion in a cut view. Overall chamber dimensions are also shown in
Fig. 4, and the names of different components and parts are also
identified.

An electrical heater with controlled input power is placed inside
the chamber at an arbitrary location. A fan is placed behind the

heater to blow air over it and properly circulate warm air inside
the chamber. The location of the fan is kept constant for all tests,
since a new air distribution pattern might necessitate retraining
the algorithm to update the weight factors. While the heater power
is variable, the fan power consumption is constant and measured
as 10W. This energy consumption is eventually converted to heat
in the enclosed chamber through damping of the air motion.
Therefore, this value is also added to the total heating power. The
heater consists of a resistor that provides Joule heating with con-
trolled input power. The amount of power provided to the heater
is controlled and monitored by a programmable DC power supply
(62000P, Chroma Systems Solutions, Inc., Orange County, CA).
According to the manufacturer’s datasheet, the uncertainty of the
power consumption measurements is 0.4%. Since there is no other
heat source available in the chamber, the total power input to the
fan and the heater can be regarded as the direct heat gain from
internal sources _QI of Eq. (1).

The model is applied to the testbed shown in Fig. 3 for various
values of direct internal heat gain enforced by varying heater
power levels. At every stage, the heater power is kept constant for
10 min in order to assure the steady-state condition is reached.
Figure 5 shows the temperature values at the steady-state condi-
tions reached after 10 min for every level of total heat gain. The
heater power is varied from _QI ¼ 0:235 kW to _QI ¼ 0:460 kW
covering 30 discrete levels. The average value of the six interior
thermocouples is shown as the inside average temperature, and
the average of the six exterior thermocouple measurements is
shown as the outside average temperature. The average tempera-
tures increase with the heat gain while the gap between the inside
and outside temperatures increases as well, signifying an increase
in the overall heat transfer across the walls. The temperature gra-
dients (Ti � To) are all positive, which demonstrates that heat is
being lost to the ambient air in this heating scenario. The value
and rate of increase of temperature gradients are different for dif-
ferent walls. The top and bottom plates are much thicker than the
surrounding walls, creating a higher thermal resistance. As a
result, as observed for the top and bottom plates, higher tempera-
ture gradients are inevitable for conducting the same heat flow
rate. Moreover, for the heating scenario tested, natural convection
causes higher heat transfer at the top compared to the bottom
plate, creating an even higher temperature gradient at the top. The
weight factors, once trained and adjusted, automatically assign the
importance or “weight” of each wall in the overall thermal load to
provide reliable estimations based on real-time temperature
measurements.

In order to use the proposed method for estimation of thermal
loads, the training algorithm is applied on the weight factors for
20 steps at an arbitrary heater power setting of _QI ¼ 0:334 kW.
After reaching the steady state, i.e., when all temperatures are
almost constant within 60:5 �C, the training procedure is initiated
by feeding the real-time temperatures to the algorithm and adjust-
ing the weight factors accordingly. One temperature measurement
is performed per second and Eq. (8) is solved at every step using
D ¼ f 0:334ð Þ. A learning rate of g ¼ 0:05 is used. Having arbitra-
rily initiated from w0;w1;…;wn ¼ 0, Fig. 6 shows the progressive
adjustment of the weight factors and the calculated heat gain.
Since the training procedure is an initial-condition iterative algo-
rithm, the converged set of weight factors is dependent on the ini-
tial guess. However, in order to ensure that the resulting set of
weight factors is correct for all future loading conditions, it is rec-
ommended to repeat the training algorithm for several heat gain
conditions.

To validate the model, the testbed wall thermal conductance
values are measured. A thermal conductivity measurement
machine (Hot Disk TPS 2500 S Thermal Conductivity System,
ThermTest, Inc., Fredericton, NB, Canada) is used to measure the
thermal conductivity k of the chamber components. The thermal
conductivity of the glass, wood, and plastic materials used
for constructing the chamber is measured as 1:05 W=m �C,
0:2 W=m �C, and 0:26 W=m �C, respectively. As observed in

Fig. 3 A picture of the testbed used for implementing the
present model. Six thermocouple pairs are attached on the
testbed walls. Each pair consists of two thermocouples
attached on the opposite sides (inside and outside) of the wall.

Table 2 Locations of thermocouple pairs installed on the
testbed walls. Refer to Fig. 3 for reference coordinates.

Thermocouple pair name x cmð Þ y cmð Þ z cmð Þ

Front 10.4 37.5 138.6
Rear 147.1 37.5 148.3
Left 80.0 0.0 85.0
Right 35.0 75.0 100.0
Top 55.0 55.0 130.7
Bottom 55.0 65.0 0.0
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Fig. 3, the chamber walls do not consist of uniform materials.
Furthermore, the wall shapes are not necessarily flat and their
thicknesses are nonuniform. Table 3 shows an approximate aver-
age of the thicknesses, surface areas, and overall heat transfer
coefficients of the testbed walls.

In common engineering practice, the designer would investigate
the room and find the conductance values shown in Table 3 to be
used in the HBM and Eq. (4). If the conductance values found
from the careful measurement of thickness, area, and conductivity
are precise, they will satisfy the heat balance equation and accu-
rate load calculations will follow. However, accurate material
data are seldom available to be used in precise estimations of con-
ductance values. Furthermore, wall materials and insulations are
often subject to degradation, which changes their conductivity
value. Moreover, the averaging and approximation of the proper-
ties by the engineer are prone to inaccuracies that can result in
thermal load miscalculations. The current method provides a
means to overcome these issues by utilizing actual system data for
calculation adjustment. The proposed method can thus be

specifically promising for retrofitting existing systems and design-
ing new ones.

Table 4 shows the adjusted weight factors after 20 correction
steps shown in Fig. 6. Note that all the weight factors are initiated
from zero, which means that the method can perform well almost
unsupervised. As observed in Fig. 6, the calculated power is con-
verged to the exact heater power in seven steps, i.e., after only 7 s
of training. It shows that a controller designed based on the pro-
posed algorithm can adjust to the room conditions within seconds
of the training procedure initiation.

Since the gradient descent optimization technique inherently
finds the local minima of the objective function [38], the adjusted
weight factors depend on their initial values and can converge to a
combination of w0 – w6 that may not necessarily correspond to
the global minimum of the objective function. As such, a disad-
vantage of the proposed method is that the weight factors may
converge to wrong values and the training algorithm can get
trapped in local minima. Bad convergence may result in incorrect

Fig. 4 Computer model of the testbed showing its overall dimensions and components: (a)
full chamber model and (b) cut view showing the chamber’s cross section

Fig. 5 Average inside and outside temperatures (left axis) and
temperature difference between inside and outside wall surfa-
ces (Ti � To) (right axis) for various levels of controlled internal
heat gain in the testbed

Fig. 6 Progressive training of weight factors and calculated
heat gain for an arbitrary heat gain of _QI 5 0:334 kW. The weight
factors are adjusted based on real-time temperature measure-
ments and the known heat gain.
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load estimations at heat gain levels other than what the algorithm
is trained for. Also, a change in the air distribution pattern can
lead to uselessness of the old trainings. In order to avoid such
issues, it is recommended that the algorithm be trained as many
times as possible during the system operation. By random trigger-
ing of the training procedure over the lifetime of the HVAC-R
system, the risk of load miscalculations can be minimized.

The testbed wall properties are carefully investigated to acquire
the wall conductance values as accurately as possible. However,
all the weight factors shown in Fig. 6 have converged to different
values than their physical estimations in Table 3. Table 4 shows
the adjusted weight factors compared to their physical estimation
according to their corresponding heat transfer coefficients shown
in Table 3. The relative errors between the adjusted value and
physical estimations are shown as the adjustment percentage. It
can be inferred from these percentages that the average wall heat
transfer coefficients can be estimated with large errors, while
utilizing the proposed data-driven approach does not even necessi-
tate any knowledge of the room physical properties.

Figure 7 shows the calculation of thermal loads using both
physically estimated and mathematically adjusted weight factors.
The 30 discrete levels of internal heat gain discussed in Fig. 5 are
tested until the testbed reached the steady state. The thermal load
estimation based on the raw physical weight factors is shown as
the unadjusted calculation. The heat gain calculations based on
the adjusted weight factors are also shown in Fig. 7 as the adjusted
calculation. It can be seen that using the raw heat transfer coeffi-
cients can result in huge errors in the calculation of thermal loads.
In this specific case, there is a minimum of 144% error in the heat
gain estimation using physical coefficients. The adjusted weight
factors, however, result in a maximum error of 16% in thermal
load calculations. It is further observed in Fig. 7 that the adjusted
heat gain calculations are relatively more accurate for heater
power levels closer to _QI ¼ 0:334 kW compared to lower and
higher power levels. This hints that the best practice is to train the
algorithm for heat gain levels that are more frequently experi-
enced by the system, so that the future estimations will be done
more accurately.

The modeling approach of the present study is based on the
HBM, which is a general-purpose methodology for residential and
nonresidential applications. Since the underlying heat transfer

equations are applicable to any geometry and configuration, there
is no theoretical hindrance for using it in buildings or vehicles.
Therefore, the proposed method can be applied to any stationary,
mobile, air conditioning, or refrigeration application. However,
since the steady-state conditions are assumed, rapid temperature
dynamics may reduce the accuracy of the method. As such, the
algorithm must be utilized more cautiously in vehicle applications
where the cabin is small and subject to temperature fluctuations.

As a data-driven method, a disadvantage of the proposed
method is that it requires some training. Although the training
procedure can be performed within seconds, the actual heat gain
values which are the training target may be unavailable in many
cases, as they can never be directly measured. However, it is
possible to artificially impose a known heat gain to an existing
room using the same testing approach of this study, i.e., isolating
the room from all possible thermal loads except a known source
of internal heating or cooling. As such, retrofit analysis of exist-
ing systems as well as design of new systems is possible by this
method. Whenever direct testing of the room for training is not
possible, conventional law-driven methods established by ASH-
RAE or complicated intelligent algorithms based on fuzzy logic
or neural networks can be used to provide an estimation of the
actual heat gains. The heat gain values acquired from such meth-
ods can be fed to the algorithm to complete the training proce-
dure. Afterward, the proposed algorithm can replace those
complicated and time-consuming calculations, as it keeps provid-
ing real-time estimations that may be even more accurate than
the mentioned methods. Of course, higher accuracy of the law-
driven estimations used for training and higher number of in-
stalled sensors can directly lead to better performance of the
method. Once a system is initiated and trained, the method can

Table 3 Approximate average thicknesses, surface areas, and
overall heat transfer coefficients of testbed walls. Refer to Fig. 4
for component names and locations.

Wall
name

Surface
area A m2ð Þ

Thickness
b mmð Þ

Heat transfer coefficient
kA=b kW=�Cð Þ

Front 0.5 5.5 0.095
Rear 0.5 5.5 0.095
Left 2.0 2.0 0.260
Right 2.0 2.0 0.260
Top 2.0 30.0 0.013
Bottom 3.0 30.0 0.020

Table 4 Adjusted weight factors compared to their physical estimations, i.e., the approximate heat transfer coefficients. The
adjustment percentage shows the relative error between the adjusted and physical values.

Weight factor Physical interpretation Physical estimation Adjusted value Adjustment percentage (%)

w0 Ventilation and infiltration NA 0.0074 NA
w1 Front wall 0.0950 0.0078 92
w2 Rear wall 0.0950 0.0106 89
w3 Left wall 0.2600 0.0063 98
w4 Right wall 0.2600 0.0072 97
w5 Top wall 0.0130 0.0402 209
w6 Bottom wall 0.0200 0.0229 14

Fig. 7 Calculated steady-state heat gain for different heater
power levels based on measured physical values as well as
adjusted values of the weight factors
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be further used for prediction of loads in future cases experi-
enced by the room.

4 Conclusions

A self-adjusting method is proposed to calculate instantaneous
thermal loads using real-time temperature measurements. The
HBM is incorporated in an automatic correction algorithm, where
the gradient descent optimization technique is used for adjusting
the heat transfer coefficients. The proposed method is verified
by experimental results and it is shown by a case study that the
self-adjusting algorithm can estimate the loads with a maximum
error of 16% while using the unadjusted physical properties of the
walls can lead to a minimum error of 144% in load calculations.

Since the present methodology is based on fundamental heat
transfer equations, it can theoretically be used in various applica-
tions of stationary, mobile, air conditioning, or refrigeration sys-
tems. However, it must be used more cautiously in applications
where temperatures are transient and fluctuating. A disadvantage
of the proposed method is that it requires some training that may
not be readily possible in some applications. To circumvent this
issue, other approaches of law-driven load calculation can be uti-
lized as an interim training step. The proposed method can be
implemented in existing as well as new HVAC-R systems to aid
their design process and retrofit analysis.
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Nomenclature

A ¼ surface area (m2)
b ¼ thickness (m)
D ¼ desired output
f ¼ sigmoid function
F ¼ objective function
k ¼ thermal conductivity (W/m �C)
O ¼ calculated output
_Q ¼ heat transfer rate (W)
T ¼ temperature (�C)
w ¼ weight factor

Greek Symbols

e ¼ convergence criterion
g ¼ learning rate

Subscripts and Superscripts

i ¼ inside
I ¼ internal sources
j ¼ wall number

m ¼ step number
n ¼ number of walls
o ¼ outside
V ¼ ventilation and infiltration
W ¼ walls
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